
A Representation Language Language

Russell Greiner and Douglas B. Lenat
Computer Science Deptartment

Stanford University

ABSTRACT

The field of AI is strewn with knowledge representation languages. The language
designer typically has one particular application domain in mind: as subsequent
types of applications are tried, what had originally been US&II j2urure.y become
undesirable limitations, and the language is overhauled or scrapped. One remedy
to this bleak cycle might be to construct a representational scheme whose domain
is the field of representational languages itself. Toward this end, we designed and
implemented RLL, a frame-based Representation Languange Language. The
components of representation languages in general (such ti slots and inheritance
mechanisms) and of RLL itself are encoded declaratively as frames. Modifvinn
these frames can change the
of the RLL environment.

semantics of RLL, by altering the

1. MOTIVATION

“One ring to rule them all... and in the darkness bind them. ”

Often a large Artificial Intelligence project begins by designing and
implementing a high-level language in which to easily and precisely
specify the nuances of the task. The language designer typically
builds his Representation Language around the one particular
highlighted application (such as molecular biology for Units
[Sfe$k], or natural language understanding for KRL [Bobrow &
Winogrudj and OWL [Szolovifs, et al.]). For this reason, his
language is often inadequate for any subsequent applications
(except those which can be cast in a form similar in structure to the
initial task): what had originally been useful features become
undesirable limitations (such as Units’ explicit copying of inherited
facts, or KRL’s sophisticated but slow matcher).

Building a new language seems cleaner than modifying the flawed
one, so the designer scraps his “extensible, general” language after
its one use. The size of the February 1980 SIGART shows how
many similar yet incompatible representation schemes have
followed this evolutionary path.

One remedy to this bleak cycle might be to construct a
representation scheme whose domain is the field of representational
languages itself. a program which could thc’n bc tailored to suit
many specific applications. Toward this end, WC arc designing and
implementing RLL, an object-centered’ Representation Languange
I,anguage.2 This paper reports on the current state of our ideas
and our implementation.

1 This “object-centering” does not represent a loss in geneiality. We will
soon see that each part of the full system, including procedural information,
is reified as a unit.

* As RLL is itself a completely self-descriptive
there is no need for an RLLL.

representation language,

2. INTRODUCTION

RLL explicitly represents (i.e. contains units-? for) the components
of reprcscntation languages in general and of itself in particular.
The programming language LISP derives its flexibility in a similar
manner: it, too, encodes many of its constructs within its own
formalisms. Representation languages aim at easy, natural
interfacing to users; therefore their primitive building blocks are
larger, more abstract, and more complex than the primitives of
programming languages.

Building blocks of a representation language include such things as
control regimes (ExhaustiveBackwardChaining, Agendas), methods
3f associating procedures with relevant knowledge (Footnotes,
Demons), tindamental access functions (Put/Get, Assert/Match),
automatic inference mechanisms (InheritFromEvery2ndGeneration,
InheritBut-PermitExceptions), and even specifications of the
intended semantics and epistemology
(ConsistencyConstraint, EmpiricalHeuristic).

of the components

RLL is designed to help manage these complexities, by providing
(1) an organized library of such representation language
components, and (2) tools for manipulating, modifying, and
combining them. Rather than produce a new representation
language as the “output” of a session with RLL, it is rather the
RLL language itself, the environment the user sees, which changes
gradually in accord with his commands.

3. HOWJS A REPRESENTATION LANGUAGE LIKE AN
ORGAN?

When the user starts RLL, he finds himself in an environment very
much like the Units package [Slefik], with one major difference. If
he desires a new type of inheritance mechanism, he need only
create a new Inheritance-type of unit, initialize it with that desired
property; and that new mode of inheritance will automatically be
enabled. This he can do using the same editor and accessing
functions hc uses for cntcring and codifying his domain knowledge
(say, poultry inspection); only hcrc the information pertains to the
actual Knowledge Base system itself, not turkeys.

The Units package has Get and Put as its tindamcntal storage and
retrieval functions; therefore RLL also begins in that state. But
there is nothing sacred about cvcn these two “primitives”. Get and
Put arc encoded as modifiable units: if they are altered, the nature
of accessing iI slot’s value will change correspondingly. In short, by
issuing a small number of commands hc can radically alter the
character of the RLI. cnvironmcnt. molding it to his personal

-----______________
3 RLL is a frame-based system [Minsky], whose building blocks are called
Units [Stefik], [Bobrow & Winograd]. Each unit consists of a set of Slots
with their respective values.

165

From: AAAI-80 Proceedings. Copyright © 1980, AAAI (www.aaai.org). All rights reserved.

preferences and to the specific needs of his application. RLL is
responsible for performing the necessary “truth maintainence”
operations, (e.g. retroactive updates) to preserve the overall
correctness of the system as a whole. For example, Get and Put
can be transformed into units which, when run as functions,
resemble Assert (store proposition) and Match (retrieve
propositions), and the user need never again mention “slots” at all.

RLL is more like a stop organ than a piano. Each stop
corresponds to a “pre-fabricated” representational part (e.g. a slot,
inheritance, format, control regime, etc.), which resides in the
overall RLL system. The initial RLL is simply one configuration
of this organ, with certain stops “pulled out” to mimic the Units
package. These particular stops reflect our intuitions of what
constitutes a general, powerful system. Some of the units initially
“pulled out” (activated) define more or less standard inheritance
regimes, such as Inherit-Along-IS-A-Links, which enables Fido to
gather default information from AnyDog.

We chose to include a large assortment, of common slots. One
hundred and six types of slots, including IS-A, SuperClass.
BroaderHeuristics, and TypicalExamples, are used to hierarchically
organize the units. That number grows daily, as we refine the
organizing relationships which were originally “smeared” together
into just. one or two kinds of slots (e.g. A-Kind-Ofl. An additional
fifteen types of slots, including ToGerValue, ToPut Value,
ToKillUnit. and To Add Value, collectively define the
accessing/updating functions.

This bootstrapping system (the initial configuration of “organ
stops”,) dots not span the scope of RLL’s capabilities: many of its
stops are initially in the dormant position. Just as a competent
musician can produce a radically different sound by manipulating
an organ’s stops, so a sophisticated RLL user can define his own
representation by turning off some features and activating others.
For instance, an FRL devotee may notice -- and choose to use
exclusively -- the kind of slot called A-Kind-Ox which is the
smearing together of Is- A, SuperSet, Abstraction,
TypicalExampleOJ PartOf etc. He may then deactivate those
more specialized units from his system permanently. A user who
does not want to see his system as a hierarchy at all can simply
deactivate the A-Kind-Of unit and its progeny. The user need not
worry about the various immediate, and indirect, consequences of
this alteration (e.g., deleting the Inherit-Along-IS-A-Links unit);
RLL will take care of them. By selectively pushing and pulling, he
should be able to construct a system resembling almost any
currently used representational language, such as KRL, OWL and
KLONE;4 after all, an organ can be made to sound like a piano.
Unlike musical organs, RIL also provides its user with mechanisms
for building his own stops (or even type of stops, or even
mechanisms for building stops). With experience, one can use
RLL to build his own new components. Rather than building
them from scratch, (e.g., from CAR, CDR, and CONS,) he can modi&
some existing units of RLL (employing other units which are
themselves tools designed for just such manipulations.)

4 This particular task, of actually simulating various existing Representation
languages, has not yet been done. It is high on our agenda of things to do.
We anticipate it will require the addition of many new components (and types of
components) to RLL, many representing orthogonal decompositions of the space
of knowledge representation.

The following examples convey the flavor of what can currently
done with the default settings of the RLL “organ stops”.

4. EXAMPLES

be

4.1. EXAMPLE: Creating a New Slot

In the following example, the user wishes to define a Fafher slot, in
a sexist genealogical knowledge base which containes only the
primitive slots Morher and Spouse. As RLL devotes a unit to
store the necessary knowledge associated with each kind of slot,
(see Figure 1,) defining a new kind of slot means creating and
initializing one new unit. In our experience, the new desired slot is
frequently quite similar to some other slot(s), with but a few
distinguishing differences. We exploited this iegularity in
developing a high level “slot-defining” language, by which a new
slot can be defined precisely and succinctly in a single declarative
statement.

1 Name: IS-A
1 Description: Lists the classes I AM-A member of.
I Format: List-of-Entries
1 Datatype: Each entry represents a class of objects.
I Inverse: Examples
1 IS-A: (AnySlot)
1 UsedSylnhefifance: Inherit-Along-/S-A-Links
1 MyTimeOfCfeation: 1 April 1979, 12:Ol AM
1 MyCreator: D.B.Lenat

Figure # 1 - Unit devoted to the “IS-A” slot. There are many other slots which are
appropriate for this unit; whose value will be deduced automatically (e.g.

inherited from AnySlot) if requested.

Creating a new slot for Father is easy: we create a new unit called
Father, and fill its HighLevelDefn slot with the value (Composition
Spouse Mofher). Composition is the name of a unit in our initial
system, a so-called “slot-combiner” which knows how to compose
two slots (regarding each slot as a function from one unit to
another). We also fill the new unit’s Isa slot, deriving the unit
shown in Figure 2.

Name:
1 IS-A:
I HighLevelDefn:

Father
(AnySlot)
(Composition Spouse Mother)

Figure # 2 - Slots filled in by hand when creating the unit devoted to the”Father”
slot. Several other slots (e.g., the syntactic slots MyCreator, MyTimeOfCreation)

are filled in automatically at this time.

The user now asks for KarlPhilippEmanuel’s father, by typing
(GetVal ue 'KPE 'Father).

GetValue first tries a simple associative lookup (GET), but finds
there is no Fafher property stored on KPE, the unit representing
KarlPhilippEmanuel. GctValue then tries a more sophisticated
approach: ask the Father unit how to compute the Father of any
person. Thus the call becomes

[Apply* (GetValue 'Father 'ToCompute) 'KPE].
Notice this calls on GctValue recursivelv. and once again there is
no value stored on the ToCompure slot-of the unit tilled Father.
The call now has expanded into
[Apply* (Apply* (GetValue 'ToCompute 'ToCompute)

'Father) 'KPE].
Luckily, there is a value on the ToCompute slot of the unit
ToCompute: it says to find the HighLevelDefn, find the slot-
combiner it employs, find its ToComput$, and ask it. Our call is
now cxpandcd out into the following:

[Apply* (Apply* (GetValue 'Composition
'ToCompute) 'Spouse 'Mother) 'KPE].

’ Each unit which represents a function has a ToCompure slot, which holds the
actual LISP function it encodes. Associating such a ToCompute slot with each slot.
reflects our view that each slot is a function, whose argument happens to be a
unit, and whose computed value may be cached away.

166

The unit called Composition does indeed have a ToCompute Slot;

after applying it, we have:
CApply* ‘(h (x) (GetValue (GetValue x ‘Mother)

‘Spouse)) ‘KPE].
This asks for the Mother slot of KPE, which is always physically
stored in our knowledge base, and then asks for the value stored in
her Spouse slot. The final result, JohannSebastian, is then
returned. It is also cached (stored redundantly for future use) on
the Fafher slot of the unit KPE. See [Lenat et al., 19791 for details.

Several other slots (besides ToCompufe) are deduced automatically
by RLL from the HighLevelDefn of Father (see Figure 3) as they
are called for. The Format of each Fafher slot must be a single
entry, which is the name of a unit which represents a person. The
only units which may have a Fafher slot are those which may
legally have a Mofher slot, viz., any person. Also, since Fafher is
defined in terms of both Mother and Spouse, using the slot
combiner Composition, a value stored on KPE:Fafher must be
erased if ever we change the value for KPE’s M&her or
AnnaMagdelena’s Spouse, or the definition (that is, 7’oCompufe) of
Composition.

Name:
1 IS-A:

Father
(AnySlot) I

1 HighLevelDefn: (Composition Spouse Mother)
1 Description: Value of unit’s Mother’s Spouse. 1
1 Format: SingleEntry
1 Datatype: Each entry is unit representing a person. I
1 MahesSenseFor: AnyPerson
1 DefinedlnTermsOf: (Spouse Mother) I
1 DefinedUsing: Composition
1 ToCompute: (A (x) (GetValue (GetValue x ‘Mother) ‘Spouse) i

Figure # 3 - Later form of the Father unit, showing
automatically.

slots filled in

Notice the the ease with which a use; can currently :‘extend his
representation”, enlarging his vocabulary of new slots. A similar,
though more extravagant example would be to define FavorifeAunf
*as (SingieMost (Unioning (Composition Sister Parenfs)
(Composition Spouse Brofher Parenfs)) $$). Note that “Unioning”
and “SingleMost” are two of the slot combiners which come with
RLL, whose definition and range can be inferred from this
example.

It is usually no harder to create a new type of slot format
(OrderedNonemptySet), slot combiner (TwoMost, Starring), or
datatype (MustBePersonOverl6), than it was to create a new slot
type or inheritance mechanism. Explicitly encoding such
information helps the user (and us) understand the precise function
of each of the various components. We do not yet feel that we
have a complete set of any of these components, but are
encouraged by empirical results like the following: The first two
hundred slots we defined required us to define thirteen slot
combiners, yet the lasf two hundred slots required only five new
slot combiners.

4.2. EXAMPLE: Creating a New Inheritance Mode

Suppose a geneticist wishes to have a type of inheritance which
skips every second ancestor. He browses through the hierarchy of
units descending from the general one called Inheritance, finds the
closest existing unit, InheritSelectively, which he copies into a new
unit, InheritFromEvery2ndGeneration. Editing this copy, he finds
a high level description of the path taken during the inheritance,
wherein he replaces the single occurrence of “Parenf” by
“GrandParent” (or by two occurrences of Parenf, or by the phrase
(Composition Parenf Parent)). After exiting from the edit, the new
type of inheritance will be active; RLL will have translated the
slight change in the unit’s high-level description into a multitude of
low-level changes. If the geneticist now specifies that
Organism # 34 is an “InheritFromEvery2ndGeneration offspring” of
Organism#20, this will mean the right thing. Note that the tools
used (browser, editor, translator, etc.) are themselves encoded as
units in RLL.

4.3. EXAMPLE: Epistemological Status

Epistemological Status: To represent the fact that John believes
that Mary is 37 years old, RLL adds the ordered pair (SeeUnit
AgeOfMaryOOOl) to the the Age slot of the Mary unit. RLL
creates a unit called AgeOfMaryOOOl, fills its *value* slot with 37
and its EpiSfa/us slot with “John believes”. See Figure 4. Note
this mechanism suffices to rcprcscnt belief about belief (just a
second chained SeeUnit pointer), quoted belief (“John thinks he
knows Mary’s age”, by omitting the *value* 37 slot in
AgeOfMaryOOOl), situational fluents, etc. This mechanism can also
be used to represent arbitrary n-ary relations, escaping the
associative triple (i.e. Unit/SZof/value) limitation.

Name:
] IS-A:

Mary

I Description:
(Person Female ContraryActor) 1
The grower of silver bells etc. I

i Age:

1 Name AgeOfMaryOOOl il Name-
1 Isa (UnitForASlotFiller) I I lsa

AgeOfMaryOO02 I

I LiveslnUnit I I LiveslnUnit
(UnitForASlotFiller) I

Mary Mary I
1 LiveslnSlot Age-

I ~Zs
37
John believes

I Teleology: Epistemic

. .
I 1 LiveslnSlot Age-
1 1 *value* 1
I I Epistatus gring Wedding805 I
1 I Teleology: Historic I

Figure 4 - Representing “John believes that Mary is 37, but she’s
When she was married. she was 21”.

really 39.

4.4. EXAMPLE: Enforcing Semantics

Suppose that Lee, a user of RLL, is constructing HearSayXXIV, a
representation language which contains cooperating knowledge
sources (KSs). He specifies that each unit representing a
knowledge source should have some very precise applicability
criteria (he defines a FuZZRelevancy slot) and also a much quicker,
rougher check of its potential relevance (he defines a
PrePreCondifions slot). If HearSayXXIV users employ these two
slots in just the way he intended, they will be rewarded with a very
efficiently-running program.

But how can Lee be sure that users of HearSayXXIV will use these
two new slots the way he intended? He also defines a new kind of
slot called Semantics. The unit for each type of slot can have a
Semanfics slot, in which case it should contain criteria that the
values stored in such slots are expected to satisfy.

Lee fills the Semanfics slot of the unit called PrePreConditions with
a piece of code that checks that the PrePreConditions slot of every
KS unit is filled by a Lisp predicate, which is very quick to
execute, which (empirically) correlates highly to the FullRelevancy
predicate, and which rarely returns NIL when the latter would
return T. This bundle of constraints captures what he “really
means” by PrePreCondifions

A user of HearSayXXIV, say Bob, now builds and runs a speech
understanding program containing a large collection of cooperating
knowledge sources. As he does so, statistics are gathered
empirically. suppose Bob frequently circumvents the
PrePreCondifions slot cntircly, by placing a’ pointer there to the
same long, slow, complete criteria he has written for the
FuNReZevancy slot of that KS. This is empirically caught as a
violation of one of the constraints which Lee recorded in the
Semanfics slot of the unit PrePreConditions. As a result, the
Semanfics slot of the Semantics unit will be consulted to find an
appropriate reaction; the code therein might direct it to print a
warning message to Bob: “The PrePreCondifions slot of a KS is
meant to run very quickly, compared with the F&Relevancy slot,
but 70% of yours don’t; please change your PrePreCondifions slots,

167

or your FullRelevancy slots, or (if you insist) the Semantics slot of
the PrePreConditions unit”.6

5. SPECIFICATIONS FOR ANY REPRESENTATION
LANGUAGE LANGUAGE

The following are some of the core constraints around which RLL
was designed. One can issue commands to RLL which effectively
“turn off’ some of these features, but in that case the user is left
with an inflexible system we would no longer call a representation
language language. Further details may be found in [Lena& Haye*
Rorh, & Klahr] and in [Geneserelh & Lenaf].

Self-description: No part of the RLL system is opaque; even the
primitive Get and Put and Evaluate finctions are represented by
individual units describing their operation.2 Current status:
complete (to a base language level).

Self-modification: Changes in the high-level description of an RLL
process automatically result in changes in the Lisp code for -- and
hence behavior of -- RLL. Current status: this works for changes
in definition, format, etc. of units representing slots and control
processes. Much additional effort is required.

Codification of Representation Knowledge: Taxonomies of
inheritance, function invocation, etc. Tools for manipulating and
creating same. These correspond to the stops of the organ,
illustrated above. Current status: this is some of the most exciting
research we foresee; only a smattering of representation knowledge
has yet been captured.

6. INITIAL “ORGAN STOPS”

The following characteristics pertain especially to the initirll state of
the current RLL system, wherein all “organ stops” are set at their
default positions. Each RLL user will doubtless settle upon some
different settings, more suited to the representation environment he
wishes to be in while constructing his application program. For
details, see [Greiner].

Cognitive economy: Decision-making about what intermediate
values to cache away, when to recompute values, expectation-
f-iltcring. Current status: simple reasoning is done to determine
each of these decisions; the hooks for more complex procedures
exist, but they have not been used yet.

Syntactic vs Semantic slots: Clyde should inherit values for many
slots from TypicalElephant, such as Color, Diet, Size; but not from
slots which refer to TypicalElephant qua data structure, slots such
as NumerOjFilledInSlots and DaleCreated. Current status: RLL
correctly treats these two classes of slots differently, e.g. when
initializing a new unit.

Onion field of languages: RLL contains a collection of features
(e.g., automatically adding inverse links) which can be individually
enabled or disabled, rather than a strict linear sequence of higher
and higher level languages. Thus it is more like an onion field
than the standard “skins of an onion” layering. Current status:
Done. Three of the most commonly used settings are bundled
together as CORLL, ERLL, and BRLL.

’ This work has led us to realize the impossibility of unambiguously stating
semantics. Consider the case of the semantics of the Lisp function “OR”.
Suppose one person believes it evaluates its arguments left to right until a non-
null value is found: a second person believes it evaluates right to left: a third
person believes it evaluates all simultaneously. They go to the Semanfics slot of
the unit called OR, to settle the question. Therein they find this expression:
(OR (Evaluate the args Iefi to right) [Evaluate the args right to leJ)J. Person #3
is convinced now that he was wrong, but persons 1 and 2 point to each other
and exclaim in unison “See, I toId you!” The point of all this is that even
storing a Lisp predicate in the Semanfics slots only specifies the meaning of a slot
up to a set of fixed points. One approaches the description of the semantics with
some preconceived ideas, and there may be more than one set of sucpi hypotheses
which are consistent with everything stored therein. See [Genesereth & Lenar].

Economy via Appropriate Placement: Each fact, heuristic.
comment, etc. is placed on the unit (or set of units) which are as
general and abstract as possible. Frequently, new units are created
just to facilitiate such appropriate placement. In the long run, this
reduces the need for duplication of information. One example of
this is the use of of appropriate conceptual units:

Clarity of Conceptual Units: RLL can distinguish (i.e. devote a
separate unit to each of) the following concepts:
TheSetOfAllElephants, (whose associated properties describe this as
a set -- such as #OjMembers or SubCaregories), TypicalElephant,
(on which we might store Expected-TuskLenglh or DefauKolor
slots), ElephantSpecies, (which EvoZvedAsASpecies some 60 million
years ago and is CloselyRelaredTo the HippopatamusSpecies,)
ElephantConcept, (which QuaZifiesAsA BeastOfBurden and a
TuskedPackyderm,) ArchetypicalElephant (which represents an
elephant, in the real world which best exemplifies the notion of
“Elephant-ness”). It is important for RLL to be able to represent
them distinctly, yet still record the relations among them. On the
other hand, to facilitate interactions with a human user, RLL can
accept a vague term (Elephant) from the user or from another unit,
and automatically refine it into a precise term. This is vital, since a
term which is regarded as precise today may be regarded as a
vague catchall tomorrow. Current status: distinct representations
pose no problem; but only an exhaustive solution to the problem
of automatic disambiguation has been implemented.

7. CONCLUSION

“‘...in Mordor, where the Shadow lies. ”

The’system is currently usable, and only through use will direction.*
for future effort be revealed. Requests for documentation and
access to RLL are encouraged. There are still many areas for
tirther development of RLL. Some require merely a large
amount of work (e.g., incorporating other researchers’
representational schemes and conventions); others require new
ideas (es., handling intensional objects). To provide evidence for
our arguments, we should exhibit a large collection of distinct
representation languages which were built out of RLL; this we
cannot yet do. Several specific applications systems live in (or are
proposed to live in) RLL; these include ELI-RISK0 (discoiery of
heuristic rules), E&E (combat gamina). FUNNEL (taxonomv of
Lisp objects, with an aim toward-autor&tic programming), ROGET
(Jim Bennett: guiding a medical expert to directly construct a
knowledge based system), VLSI (Mark Stefik and Harold Brown: a
foray of AI into the VLSI layout area), and WHEEZE (Jan Clayton
and Dave Smith: diagnosis of pulminary function disorders,
reported in [Smifh & Clayton]).

Experience in AI research has repeatedly shown the need for a
flexible and extensible language -- one in which the very
vocabulary can be easily and usefully augmented. Our
representation language language addresses this challenge. We
leave the pieces of a representation in an explicit and modifiable
state. By performing simple modifications to these representational
parts (using specially-designed manipulation tools), new
representation languages can be quickly created, debugged,
modified, and combined. This should ultimately obviate the need
for dozens of similar yet incompatible representation languages,
each usable for but a narrow spectrum of task.

68

ACKNOWLEDGEMENTS

The work reported here represents a snapshot of the current state of an on-going
research effort conducted at Stanford University. Researchers from SAIL and
HPP are examining a variety of issues concerning representational schemes in
general, and their construction in particular (viz., [Nii & Aiello]). Mark Stefik and
Michael Geneseretb provided frequent insights into many of the underlying issues.
We thank Terry Winograd for critiquing a draft of this paper. He, Danny
Bobrow, and Rich Fikes conveyed enough of the good and bad aspects of KRL
to guide us along the path to RLL. Greg Ilarris implemented an early system
which perfomred the task described in Section 4.1. Others who have directly or
indirectly influenced this work include Bob Balzer, John Brown, Cordell Green,
Johan deKleer, and Rick Hayes-Roth. To sidestep InterLisp’s space limitation,
Dave Smith implemented a demand unit swapping package (see [Smith]). The
research is supported by NSF Grant #MCS-79-01954 and ONR Contract
#NOOO14-80-C-0609.

BIBLIOGRAPHY
Aikins, Jan, “Prototypes and Production Rules: An Approach to Knowledge

Representation from Hypothesis Formation”, HPP Working Paper HPP-79-
10, Computer Science Dept., Stanford University, July 1979.

Bobrow, D.G. and Winograd, T., “An Overview of KRL; a Knowledge
Representation Language”, SIJCAI, August 1977. a

Brachman, Ron, “What’s in a Concept, Structural Foundations for Semantic
Networks”. BBN report 3433, October 1976.

Findler, Nicholas V. (ed.). Associafive Networks. NY. hcadcmic Press, 1979.
Gencsereth, Michael, and Lenat, Douglas B.. SeIfDescripfion and -Modijicnrion in

a Knowledge Representation Language, HPP Working Paper HPP-80-10,
June, 1980.

Greiner. Russell. “A Representation Language Language”, HPP Working Paper
HPP-80-9, Computer Science Dept., Stanford University, June 1980.

Lenat, Douglas B.. “AM: Automated Discovery in Mathematics”, SIJCAI, August
1977

Lenat, D. B., Hayes-Roth, F. and Klahr. P., “Cognitive Economy”, Stanford HPP
Report HPP-79-15. Computer Science Dept., Stanford University, June 1979.

Minsky, Marvin, “A Framework for Representing Knowledge”, in 77re I’s#rofogv
OJ Computer Vision. P. Winston (ed.), McGraw-Ilill, New York, 1975.

Nii, II. Penny, and Aiello, N., “AGE (Attempt to Generalize): A Knowledge-
Based Program for Building Knowledge-Based Program”, 6IJCAI. August
1979.

SIGART Newsletter, February 1980 (Special Representation Issue; Brachman &
Smith, eds.).

Smith. David and Clavton. Jan. “A Frame-based Production System Architecture”,
AAAI Conference, .1980.

Smith, David, “CORLL: A Demand Paging System for Units”, HPP Working
Paper HPP-80-8, June 1980.

Stefik, Mark J.. “An Examination of a Frame-Structured Representation System”,
SIJCAI, August 1977.

Szolovits, Peter, Hawkinson, Lowell B., and Martin, William A., “An Overview of
OWL, A Language for Knowledge Representation”, MITLLCS/TM-86,
Massachusetts Institute of Technology, June 1977.

Woods, W. A., “What’s in a Link, Foundations for Semantic Networks”, in D. G.
Bobrow & A. M. Collins (eds.), Representation and Understanding, Academic
Press, 1975.

,

169

